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Abstract: This paper deals with the study of steady, laminar, incompressible convection flow along a rotating 

vertical cone with thermal radiation and thermophoresis immersed in a fluid saturated porous medium.  The fluid 

is assumed to be a gray, absorbing-emitting but a scattering medium. The radiative heat flux in the energy 

equations is described by employing the Rosseland approximation. The governing equations for the conservation 

of mass, momentum, energy and concentration of the problem are formulated. The resultant equations are 

transformed into simple ordinary non-linear differential equations and then solved by employing Runge-Kutta 

method with shooting technique. The numerical results concerning the flow fields, such as, the fluid velocities 

(tangential, circumferential and normal), temperature and concentration profiles across the boundary layer are 

discussed graphically for different values of physical parameters, namely thermophoresis coefficient, relative 

temperature difference parameter, inverse Darcy parameter and thermal radiation. These characteristics are also 

discussed with the aid of Nusselt number and Sherwood number. 
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 1.   INTRODUCTION  

Problems of coupled heat and mass transfer from different geometries embedded in porous media have great importance 

in numerous engineering and industrial processes such as thermal insulation, underground energy transportation, drying of 

porous solids, enhanced oil recovery and cooling of nuclear reactors. Few models of these processes are design of 

chemical processing equipment, cooling towers, food process, harm of crops due to freezing, desalination, refrigeration 

and air conditioning, consolidated heat exchangers, solar power collectors, etc. References of comprehensive literature 

surveys concerning the topic of porous media can be had in most recent books by Nield and Bejan [14], Vafai [21], Pop 

and Ingham [16], and Ingham and Pop [11]. Further, A phenomenon which origins small particles to be vigorous away 

from a hot surface and towards a cold one is well-known as thermophoresis. Aerosol particles, such as dust, when 

suspended in a gas with a temperature gradient, experience a force in the trend to the temperature gradient. 

Thermophoretic velocity is the velocity achieved by the particles and thermophoretic force is the force practiced by the 

suspended particles attributable to the temperature gradient. The quantities of thermophoretic force and thermophoretic 

velocity are commensurate with the temperature gradient and based on thermal conductivity of aerosol particles, 

thermophoretic coefficient, heat capacity of the gas and the transporter gas. Little micron sized particles are located on 

cold surfaces attributable to thermophoresis. In this procedure, the dissonance of particles from hot placement also takes 

place and a particle-free layer is noted around hot objects. This phenomenon has several sensible applications in filtration 

in gas cleansing, microelectronics manufacture, scattering the particulate material deposition turbine blades and particle 

surfaces created by condensation the vapor-gas mixtures. However, thermophoresis phenomenon was first introduced by 

Tyndall [20] when he noted a dust free zone in a dusty gas around a hot body. Hales et al. [10] have analyzed the 

thermophoretic deposition in geometry of engineering by studying the aerosol transport in a naturally-convected boundary 
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layer.Garg and Jayaraj [9] have examined the thermophoretic deposition of aerosol particles due to the impingement of 

laminar slot jet over an inclined plate. Chiou [5] reported similarity solutions to study the effects of thermophoresis on 

submicron particle deposition from a forced laminar boundary layer flow onto an isothermal moving plate in a stationary 

incompressible fluid.Tsai and Liang [19] have obtained self-similar solutions for boundary layer flows to improve a 

rational correlation for estimating the influence of thermophoresis on aerosol deposition from laminar flow system. 

Chamkha and Pop [3] investigated the effect of thermophoresis particle deposition on heat and mass transfer by free 

convection from a vertical flat plate embedded in a porous medium. Walsh et al. [22] have analyzed the thermophoretic 

deposition of aerosol particles from mixed laminar tube flow with a cooled surface. Chamkha et al. [4] have studied the 

heat and mass transfer by free convection flow over a flat surface embedded in a porous medium in the presence of 

thermophoretic effect. EL-Hakiem et al. [7] have discussed the combined heat and mass transfer with the effects of 

thermophoresis on non-Darcy natural convection in a fluid saturated porous medium with thermal radiation 

effect.Muhaimin et al. [12] have considered the problem of two-dimensional mixed convection flow of viscous fluid with 

heat and mass transfer with the thermophoresis effect. Ganesan et al. [8] have analyzed the influence of thermophoresis in 

a doubly stratified free convective flow along a vertical plate. 

On the other side, investigations of radiative heat transfer play an apparent role in adjusting and dominant the heat transfer 

process in polymer processing industry. The quality of final product in the industry bases on the heat dominant factors. 

Additionally, the influences of thermal radiation on flow and heat transfer phenomena are significant in the design of 

several advanced energy convection systems acting at high temperature. The emission of hot walls and the operating fluid 

result in the form of thermal radiation. The thermal radiative effects are more beneficial when the difference between 

ambient temperature and the surface is bigger. The radiation effects are quite prominent in the design and producing of 

pertinent equipment. Recent advancements in hypersonic flights, gas cooled nuclear reactors and nuclear energy plants, 

gas turbines and space vehicles are several implementations of radiative heat transfer. The combined thermal radiation 

and mixed convection from a permeable vertical surface in a non- Darcy porous medium was examined by Murthy et al. 

[13]. Rashad [17] reported numerical solutions for the effects of thermal radiation and thermophoresis particle deposition 

on heat and mass transfer by steady free convection over vertical flat plate embedded in a porous medium. Duwairi and 

Damseh [6] have considered the thermophoresis-thermal radiation interaction on mixed-convection heat and mass transfer 

problem from vertical surfaces embedded in saturated porous medium. Bakier and Gorla [2] analyzed the influences of 

radiation and thermophoresis and in a viscous fluid over a semi-infinite vertical plate. The problem of MHD flow of 

viscous fluid over an inclined surface in the presence of thermophoretic and radiation effects was performed by Noor et al. 

[15]. Alam and Rahman [1] studied the effects of thermal radiation and thermophoretic particle deposition on unsteady 

heat and mass transfer flow pass an infinite inclined surface. Shehzad et al. [18] analyzed the effects of thermophoresis 

and thermal radiation in two dimensional mixed convection boundary layer flow of Jeffery fluid over a linearly stretching 

surface. Shehzad et al. [7] have also investigated the thermophoresis particle deposition on heat and mass transfer by 

mixed convection three-dimensional radiative flow of an Oldroyd-B fluid. 

The aim of present investigation is to examine the effects of the thermophoresis and thermal radiation on heat and mass 

transfer by mixed convection over a vertical rotating cone embedded in saturated porous medium. The governing partial 

differential equations are transformed into a similar form and then solved numerically using the Runge-Kutta method and 

Newton-Raphson method. Graphical results for tangential and azimuthal skin friction coefficients, wall thermophoretic 

velocity, local Nusselt number and Sherwood numbers under the effect of different dimensionless groups are presented 

and discussed in detail.The problem is formulated in section- 2.2. Section- 2.3 contains the numerical solution. Results 

and discussions are presented in section- 2.4. The concluding remarks are given in section- 2.5 and the references are in 

section 2.6. 

2.    FORMULATION OF THE PROBLEM 

We consider steady, laminar, two-dimensional viscous incompressible flow over a vertical rotating cone in a fluid 

saturated porous medium. Fig. 2.1 shows physical configuration. Here we consider curvilinear coordinate system to 

describe the flow configuration. The surface of the cone is maintained with the variable temperature and concentration, 

which are higher than ambient fluid temperature and concentration. The fluid is assumed to be gray, emitting and 

absorbing medium but not scattering. All the fluid and the porous medium properties are assumed to be constant except 

the density in buoyancy force term in the momentum equations. 
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Fig. 2.1: Physical configuration and coordinate system 

We assume that the fluid and the porous medium are to be locally thermodynamic equilibrium with solid matrix. Using 

the above assumptions and boundary layer and Boussinesq approximations the governing boundary layer equations for 

conservation of mass, momentum, energy and species are as follows: 

0
u w u
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 
  
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The corresponding boundary conditions  

(i) On the surface of the cone (z = 0) 

0, , 0, (no slip at the surface)

( ), ( ) (Surface temperature and concentration)w w

u v r w

T T x C C x

   

 
  (2.6a) 

(ii) In the free stream region z   

0, 0, ,u v T T C C           (2.6b) 

where x-axis is along a meridional section, y-axis is along a circular section and the z-axis is normal to the cone surface, 

u, v andware the velocity components along the tangential (x), circumferential or azimuthal (y) and normal (z) directions 

respectively, r is radius of the cone, is the angular velocity of the rotation,   is the fluid density,  is the dynamic 

viscosity, K is the permeability of the porous medium, pc is the specific heat at constant pressure, g is the acceleration due 
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to gravity, T and C are the thermal and concentration coefficients,   is the cone apex half angle, ek  is the effective 

thermal conductivity, rq is the radiative heat flux and D is the molecular diffusivity. 

According to Rosseland approximation the radiative heat flux rq for an optically thick boundary layer is;  

*
4

*

4

3
rq T

k


  

        

(2.7) 

where
*k  and 

*  are respectively the mean absorption coefficient and the Stefan-Boltzmann constant. The fluid-phase 

temperature differences within the flow are assumed to be sufficiently small such that T
4
 may be expressed as a linear 

function of the temperature. This is accomplished by expanding in a Taylor series about T∞ and neglecting higher order 

terms to yield 

4 3 44 3T T T T           (2.8) 

Using eqns. (2.7) and (2.8), eqn. (2.44) reduces to  
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    (2.9) 

And the thermophoretic velocity 
tv which appear in eqn. (2.5) recommended by Talbot et al. [69] is defined as  

t

T
v k

z


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

         (2.10) 

where k is the thermophoretic coefficient whose values range from 0.2 and 1.2 and k is the thermophoretic diffusivity. 

2.2.1  Non-dimensionalisation 

To obtain the non-dimensional governing boundary layer equations we introduce the following non-dimensional 

transformations:  
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 (2.11)

 

where (L) is the cone slant height, TL is the cone surface temperature and CL is the concentration at the cone base (x = 

L).Substituting Eqns. (2.10) and (2.11) in Eqs. (2.1) – (2.3), (2.5) and (2.9), the following non-dimensional equations are 

obtained:- 

1

2
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The transformed boundary conditions are 
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The main objective of the present study is to find the parameters of physical interest in fluid flow, heat and mass transport 

problems which are the local surface skin friction coefficients in x (tangential) and y (azimuthal) directions, local Nusselt 

number and local Sherwood number.  

 
0

2

0

2

,
sin

z
fx

u

z
C

x



 



 
 
 


  

0

2

0

2

,
sin

z
fy

v

z
C

x



 



 
  

 


  
0 ,z

x

w

T
x

z
Nu

T T





 
  

 


  
0z

x

w

C
x

z
Sh

C C





 
  

 



 

(2.18) 

These parameters are given by these parameters can be written in non-dimensional form as follows:- 

Skin friction coefficient in x-direction 

1/2Re (0)fxC H           (2.19) 

Skin friction coefficient in y-direction 

1 1/22 Re (0)fyC G           (2.20) 
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Local Nusselt number 

1/2Re (0)xNu            (2.21) 

Local Sherwood number  

1/2Re (0)xSh            (2.22) 

3.    METHOD OF SOLUTION 

The set of equations (2.12)-(2.16) concerning boundary value problems pertinent to vertical rotating cone are coupled, 

nonlinear ordinary differential equations, which are difficult to solve analytically, therefore we approach suitable 

numerical method, namely shooting technique. Hence, in order to solve (2.12) – (2.16) with the boundary conditions 

(2.17) we used shooting technique (see Murthy et.al [40], Srinivasacharya et.al [65, 66] and Mallikarjuna et.al [37]) that 

use Runge-Kutta method and Newton-Raphson method. The main steps involved in this method are as follows: 

Step-1: Transforming Higher order equations into first order equations: 

In this, first eqns. (2.12) - (2.16) are converted into a system of differential equations of first order, by assuming 

1 4 6 8, , , ,H X G X X X     we get 

1
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with boundary conditions 
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Step-2: Decision on ∞: 

The infinite value    can be chosen large enough, so that a suitable change in the solution is observed for  larger than

   . 

Step-2: Converting boundary value problem (BVP) into initial value problem (IVP): 

We convert BVP (2.23)-(2.31) into initial value problem by choosing suitable initial conditions for 

3 5 7 9(0), (0), (0), (0)X X X X , which are not specified at 0  .That is 

3 5 7 9(0) 0.5, (0) 0.5, (0) 0.5, (0) 0.5X X X X      .
 

Step-4: Integrate the IVP: 

The eqns. (2.23)-(2.31) are integrated using fourth order Runge-Kutta method from 0   to 
max over successive step 

lengths  , where 
max is   at  and chosen large enough so that a suitable change in the solution is observedfor 

larger than
max . We employed ODE45 solver in MATLAB to solve these nine first ordered coupled nonlinear ordinary 

differential equations. The accuracy of the assumed values for 
3 5 7 9(0), (0), (0), (0)X X X X is then checked by 

comparing the calculated values of 
2 4 6 8, , ,X X X X  at 0  with their given value at   . If a difference exists, 

another set of initial values for 
3 5 7 9(0), (0), (0), (0)X X X X  is assumed and the process is repeated.  

Step-5: Employing Newton-Raphson method to accurately predict initial conditions: 

Newton-Raphson method for solving nonlinear equations involves an iterative process of iteratively refining x, by a 

correction, h  

1i iX X h            (2.33) 

where h is calculated by linear extrapolation of the function, f(x) to zero. 
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i
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 
 

       (2.34) 

This approach can be scaled up readily to solve the roots of coupled equations. For the present problem the equations in 

matrix form are  
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                      (2.35) 

where  1 2 3 4

T
h h h h is the solution of the problem. 
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                                              (2.36) 
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These equations are designed to find initial values of 3 5 7 9, , ,X X X X that satisfy final values of , , ,H G   at  

. Equations (2.35) and (2.36) can be expressed using the matrix and vector variable as  

1i iW W h                      (2.37) 

and 

0 F Kh                       (2.38) 

respectively, and combined to reach an iterative process 

1
1i iW W K F
            (2.39) 

where K is the Jacobian matrix. Although the sixteen derivatives that comprise in K cannot be expressed analytically, they 

can be approximated by two-term finite divided differences. The first of the sixteen is estimated by the equation 

 

3 3 5 7, 9 3 5 7 , 9

5 7 9

( , , ) ( , , )

3 3, ,

( 10) ( 10)( 10)

( 0)

X dX X X X X X X X

X X X

H HdH

dX dX

 



   
 

 
  (2.40) 

To find the approximation values for sixteen derivatives, the ODEs in (2.23) – (2.31) are to be solved for four 4-tuple of 

initial values  3 5 7 9, , ,X X X X ,  3 3 5 7 9, , ,X dX X X X ,  3 5 5 7 9, , ,X X dX X X ,  3 5 7 7 9, , ,X X X dX X
 

and 

 3 5 7 9 9, , ,X X X X dX , where 3 5 7, ,dX dX dX  and 9dX  are small numbers. 

At first, the ordinary differential equations (2.23)-(2.31) are solved in the interval max0    for four 4-tuples of initial 

values, where 3 5 70.01, 0.01, 0.01,dX dX dX   and 9 0.01dX  . The calculated values of 3 5 7 9, , ,X X X X for each 4-tuple 

of initial conditions are placed into an array 1 2 3 4( , , , )W W W W . 

Second, the sixteen derivatives involved in K are evaluated. Third, new approximations of initial values are evaluated 

from (2.39). This process is continuous until the magnitude of the both corrections within 10
-6

. The accuracy of the 

solution is enhanced by taking 3 5 7, ,dX dX dX  and 9dX to reduce as the solution converge. 

4.    RESULTS AND DISCUSSIONS 

In order to get a clear insight of the physical problem, numerical results for the local skin friction coefficients in the 

tangential and azimuthal directions, local Nusselt number, local Sherwood number, and wall thermophoretic velocity are 

presented with the help of graphical illustrations. The results are given through a parametric study showing the effects 

different dimensionless parameters, namely, of Darcy number and thermal radiation parameter R, and thermophoretic 

coefficient k. These conditions are intended for the value of Prandtl number (Pr) is taken to be 0.71 which corresponds to 

air and the value of Schmidt number (Sc) is chosen to represent hydrogen at 25
0
C and 1 atm. The dimensionless buoyancy 

parameter gs take the value 30, which corresponds to the problem entire mixed convection regime, and the corresponding 

parameter N takes the value both aiding and opposing flows.  The results of this parametric study are shown in figures. 

Figs. 2.2- 2.4 illustrate the variation of tangential, circumferential and normal velocity profiles for different values of 

inverse Darcy parameter (Da
-1

) respectively. Increase in inverse Darcy parameter causes an enhancement in viscosity 

effect in boundary layer regime. This leads to reduce the fluid flow rate over the boundary layer. Hence tangential 

velocity profile retards considerably, decrease velocity boundary layer thickness for larger values of inverse Darcy 

parameter as shown in fig.2.2. We notice depreciation in circumferential velocity profile with rise in inverse Darcy 

number as given in fig. 2.3. Conversely, normal velocity profiles reported opposite results as increase in inverse Darcy 

number (fig. 2.4). 

Figs. 2.5 and 2.6 show the variation of temperature and concentration distributions for different values of inverse Darcy 

number (Da
-1

). As observed in fig. 2.2, volume flow rate of the fluid is increased in boundary layer regime, transfer of 

heat is increased. Temperature distribution therefore boosted, i.e. increasing thermal boundary thickness for larger values 

of inverse Darcy number. Concentration distribution reported similar results, i.e. increase in solutal boundary layer 

thickness. 
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Figs. 2.7 – 2.11 depict the variation of tangential, circumferential and normal velocity profiles for different values of 

inverse Darcy number (Da
-1

). Increasing radiation parameter R accelerates strongly, i.e., increases the fluid tangential 

velocity while circumferential and normal velocity profiles reduce. Increasing thermal radiation contribution with an 

increase in R values strengthens the thermal diffusivity of the fluid regime and enhances the thermal energy in the thermal 

boundary layer. Temperature profiles are therefore increased for larger values of R, as shown in fig. 2.10. Both velocity 

and thermal boundary layer thicknesses are increased with increasing contribution from thermal radiation (with decreasing 

contribution from thermal conduction). Conversely, there is considerable decrement in concentration distribution for 

larger values of R, as observed in fig. 2.11. 

Figs. 2.12 – 2.16 depict the variations of tangential skin-friction coefficient (or (0)H  ) and azimuthal skin-friction 

coefficient (or (0)G ), local Nusselt number (or (0)  ), local Sherwood number(or (0) ), anddimensionless wall 

thermophoretic velocity (or twV ) with different values of Darcy number Da  for both aiding and opposing flows

 0 0N and N  , respectively. It is known that the presence of a porous medium in the flow presents a reluctance 

to flow. Thus, this reluctant force tends to decelerate the motion of the fluid along the cone surface. As the result of a 

causing a deceleration in the flow with an increase in the inverse Darcy number Da  induces a significant reduction in 

both the tangential skin-friction coefficient (0)H   and wall thermophoretic velocity twV  and a pronounced 

enhancement in the azimuthal skin-friction coefficient (0)G , local Nusselt number (0)  , and Sherwood number,

(0) for both aiding and opposing flows.This means that the presence of porous medium causes higher restriction to 

the fluid, which diminishes the primary fluid flow and boosts the secondary of the fluid flow. 

The effect of the thermal radiation R on the tangential skin-friction coefficient (0)H  , azimuthal skin-friction 

coefficient (0)G , local Nusselt number -θ'(0), local Sherwood number (0) , andwall thermophoretic velocity twV are 

respectively shown in Figs. 2.17 – 2.21. From these figures, it can be seen that the increasing in thermal radiation Rleads 

to a significant reduction in the local Nusselt number (0)  . This behavior produces a more pronounced enchantment in 

the local skin-friction coefficients, local Sherwood number or thewall thermophoretic velocity. The reason for this trend 

can be explained as follows, the specific effect of the radiation parameter Ris to enhance the temperature gradient at the 

cone surface and thereby contribute to decrease the heat transfer rate. However, larger values of R imply smaller values of 

local Nusselt number. This may be related to the fact that the raise of the values of R implies more interaction of radiation 

with the thermal boundary layers and consequently the heat absorption intensity of the fluid boosts. 

On the other hand, it can be seen from Figs. 2.12- 2.21 that positive values of the buoyancy ratio N correspond to aiding 

flow while negative values of N correspond to opposing flow. In addition, an increment in the values of N has a tendency 

to promote the buoyancy effects due to concentration difference. This produces more flow along the cone surface causing 

the local skin-friction coefficients, Nusselt and Sherwood numbers to enhance as shown in figures 2.12 – 2.15 and 2.17 – 

2.20. This increase in the skin-friction coefficients occurs at the expense of thewall thermophoretic velocity, which 

decrease strongly as N increases as evident from figures 2.16and2.21. Furthermore, it is noted that a rise in the 

thermophoretic coefficient k clearly induces a marked drop in both the thewall thermophoretic velocity and local 

Sherwood number, while an insignificant behavior occurs in both the local skin-friction coefficients, Nusselt number. 

In the absence of mass transfer with thermophoresis, thermal radiation and inverse Darcy parameter the nonlinear 

ordinary differential equations (2.23)-(2.31) with corresponding boundary conditions (2.32) exactly coincides with those 

of Hering and Grosh [32] and Himasekhar et.al [33]. The comparison results found very good agreement with earlier 

existing results as shown in Tables 2.1 and 2.2, respectively. 

Table 2.1:The values of (0), (0)H G   and (0)  for different values of 
2Re

s

Gr
g  for Pr 0.7,

1 0,Da  0R   and 

0N  (in the absence of concentration equation). 

sg  
Results of Hering and Grosh [32] The results of present study 

-H(0) -G(0) -θ (0) -H (0) -G(0) -θ (0) 

0 1.0205 0.61592 0.42852 1.0203 0.61583 0.42842 

1.0 2.2078 0.85076 0.61202 2.2075 0.85080 0.61213 

100 46.052 2.4738 1.7946 46.0523 2.47382 1.79459 
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Table 2.2.: The values of (0), (0)H G   and (0)   for different values of Pr for 0.1sg  ,
1 0Da  and 0N   (in the 

absence of concentration equation). 

 

Pr 

Results of Himasekhar et al. [33] Results of present study 

-H(0) -G(0) -θ (0) -H (0) -G(0) -θ (0) 

1.0 1.1282 0.6437 0.5457 1.12824 0.64374 0.54573 

2.0 1.1120 0.6335 0.7450 1.11203 0.63347 0.74502 

10 1.0702 0.6202 1.4106 1.07018 0.62021 1.41066 

5.   CONCLUSIONS 

The effects of the various relevant parameters namely the Darcy number, thermal radiation parameter and thermophoretic 

coefficient on the local skin friction coefficients in the tangential and azimuthal directions, wall thermophoretic velocity, 

local Nusselt Sherwood numbers are shown graphically and discussed.  

 From the obtained results of the problem, it was found that an increasing in the values of Darcy number resulted in a 

pronounced increase in the azimuthal skin-friction coefficient, local Nusselt and Sherwood numbers, for both aiding and 

opposing flowswhereas the effects reverse significantly with both the tangential skin-friction coefficient and wall 

thermophoretic velocity. 

 Increase in the thermal radiation parameter causes an enhancement in local skin-friction coefficients, local Sherwood 

number or thewall thermophoretic velocity, whereas the opposite trend happened with the local Nusselt number.  

 Finally, both the wall thermophoretic velocity and local Sherwood number are reduced as the thermophoretic 

coefficient increased, while unaffected behavior is noted for the local skin-friction coefficients and Nusselt number. 

5.1 Graphs: 

 

Fig  2.2: Tangential velocity profile  F for different values of inverse     Dar Darcy number  1Da

 

 

Fig 2.3: Circumferential velocity profile  G  for different values of inverse Darcy number  1Da  
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Fig2.4: Normal velocity profile  H for different values of inverse Darcy number  1Da

 

 

Fig 2.5: Temperature profile   for different values of inverse Darcy number  1Da  

 

Fig 2.6: Concentration profile    for different values of inverse Darcy number  1Da
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Fig 2.7: Tangential velocity profile  F  for different values of radiation parameter  R  

 

Fig 2.8: Circumferential velocity profile  G  for different values of radiation parameter  R
 

 

Fig2.9: Normal velocity profile  H for different values of radiation parameter  R  

 

Fig 2.10: Temperature profile   for different values of radiation parameter  R
 

 

http://www.researchpublish.com/


International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 3, Issue 2, pp: (100-115), Month: October 2015 - March 2016, Available at: www.researchpublish.com 

 

Page | 112 
Research Publish Journals 

 

Fig 2.11: Concentration profile   for different values of radiation parameter  R  

 

Fig2.12: Tangential skin-friction  fxC  for different values inverse Darcy number  1Da

 

 

Fig 2.13: Azimuthal skin-friction  fyC for different values of inverse Darcy number  1Da  

 

Fig 2.14: Local Nusselt number  Nu for different values of inverse Darcy number  1Da
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Fig 2.15: Local Sherwood number  Sh  for different values ofinverse Darcy number  1Da  

 

Fig 2.16:Wall thermophoretic velocity  twV  for different values of inverse Darcy number  1Da

 

 

Fig 2.17: Tangential skin-friction  fxC for different values of radiation parameter  R
 

 

Fig 2.18: Azimuthal skin-friction  fyC for different values ofradiation parameter  R
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Fig 2.19: Local Nusselt number  Nu  for different values ofradiation parameter  R  

 

Fig 2.20: Local Sherwood number  Sh  for different values ofradiation parameter  R
 

 

Fig 2.21: Wall thermophoretic velocity  twV  for different values of radiation parameter  R  
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